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Abstract— Perceiving accurate 3D object shape is important
for robots to interact with the physical world. Current research
along this direction has been primarily relying on visual obser-
vations. Vision, however useful, has inherent limitations due to
occlusions and the 2D-3D ambiguities, especially for perception
with a monocular camera. In contrast, touch gets precise local
shape information, though its efficiency for reconstructing the
entire shape could be low. In this paper, we propose a novel
paradigm that efficiently perceives accurate 3D object shape by
incorporating visual and tactile observations, as well as prior
knowledge of common object shapes learned from large-scale
shape repositories. We use vision first, applying neural networks
with learned shape priors to predict an object’s 3D shape from a
single-view color image. We then use tactile sensing to refine the
shape; the robot actively touches the object regions where the
visual prediction has high uncertainty. Our method efficiently
builds the 3D shape of common objects from a color image
and a small number of tactile explorations (around 10). Our
setup is easy to apply and has potentials to help robots better
perform grasping or manipulation tasks on real-world objects.

I. INTRODUCTION

For a robot to effectively interact with the physical world,
e.g., to recognize, grasp, and manipulate objects, it is highly
helpful to know the accurate 3D shape of the objects. 3D
shape perception often relies on visual signals; however, using
vision alone has fundamental limitations. For example, visual
shape perception is often ambiguous due to the difficulties
in discriminating the influence of reflection [1]; real-life
occlusions and object self-occlusions also pose challenges
to reconstruct full 3D shape from vision. The use of depth
sensors alleviates some of these issues, though depth signals
can also be too noisy to capture the exact object shape, and
depth measurement is largely impacted by the object’s color
or transparency.

Touch is another way to perceive 3D shapes. The majority
of tactile sensors measure the force distribution or geometry
over a small contact area. A robot can use multiple touches,
combined with the position and pose of the sensor in each
touch, to reconstruct an object’s shape without suffering from
the ambiguity caused by its surface color or material [2].
Tactile sensing is however constrained by the size and scale
of the sensor: as each touch only gets information of a
local region, it may take many touches and a long time
to reconstruct the full shape of an object.
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Fig. 1: Our model for 3D shape reconstruction. It first reconstructs
a rough 3D shape from a single-view color image, leveraging
shape priors learned from large-scale 3D shape repositories. It then
efficiently incorporates local tactile signals for shape refinement.

A natural solution is to use tactile sensors to augment
vision observations, just as human use fingers—using vision
for rough shape reconstruction and touch exploration for
shape refinement, especially in occluded regions. For example,
Bjorkman et al. [3] explored refining visually perceived shape
with touch, where they used a depth camera for a point cloud,
a three-finger Schunk Dextrous hand for tactile data, and
Gaussian processes for shape prediction.

In this paper, we propose a model that estimates the full 3D
shape of common objects from monocular color vision, touch,
and learned shape priors. We first use vision to predict the full
3D shape of the object from a monocular color and/or depth
image, leveraging the power of 3D deep learning and large-
scale 3D shape repositories. Specifically, our model is trained
on many 3D CAD models and their RGB-D renderings; it
learns to reconstruct a 3D shape from a color image by
capturing implicit shape priors throughout the process. It
generalizes well to real scenarios, producing plausible 3D
shapes from a single image of real-world objects.

We then let the robot touch the object to refine the estimated
shape. The tactile sensor we use is a GelSight sensor [4],



which measures the geometry of local surface with high
spatial resolution. By touching object surface with GelSight,
the robot obtains additional constraints on the object geometry.
Instead of making a local update to the reconstruction for
each touch, which is inefficient, we incorporate local tactile
constraints to refine the shape globally using the learned
shape priors. Moreover, we propose an exploration policy
that actively selects the touch point to maximally reduce the
uncertainty in the shape prediction. This helps to reduce the
number of touches needed.

We aim to make the system efficient and easy to apply.
For efficiency, we use only one visual image and a few touch
explorations (5–10 touches); for system simplicity, we use a
fixed color camera and a tactile sensor on the effector of a
6-DOF robot arm. The setup can be easily applied to other
robots as well.

We test our system on multiple common objects, and show
that with a small number of touch exploration, the robot can
predict the 3D object shape well. We also present ablation
studies to qualitatively and quantitatively validate the effect
of our learned shape priors and the active exploration policy.
The system can be easily applied to other robots that have
a high degree-of-freedom arm and an external color camera.
This enables the robot to effectively perceive 3D object shape
and to interact with the object.

II. RELATED WORK

A. 3D Shape Reconstruction from Vision

3D shape completion from depth maps or partial scans
has been widely studied in robotics, computer vision, and
computer graphics. Traditional methods have attempted
to complete shapes with local surface primitives, or to
formulate it as an optimization problem, e.g., Poisson surface
reconstruction solves an indicator function on a voxel grid
via the Poisson equation [5]. Recently, there have also been
a growing number of papers on completing shapes via their
structure and regularities [6] and on learning shape priors
in a fully data-driven style [7]. In particular, Dai et al. [8]
obtained very impressive results on 3D shape completion from
partial depth scans by levering 3D convolutional networks
and nonparametric patch-based shape synthesis methods.

The robotics community has explored how shape comple-
tion can help grasping using Gaussian Processes [9]. Mahler et
al. [10] explored how Gaussian process implicit surfaces
can be used with sequential convex programming for grasp
planning. More recently, Varley et al. [11] explored how to
better grasp an object by first employing a convolutional
neural net for shape completion.

A more challenging problem is to recover 3D object shape
from a single RGB image, without depth information. Solving
the problem requires both powerful recognition systems and
prior shape knowledge. With large-scale shape repositories
like ShapeNet [12], researchers have made significant progress
on data-driven approaches for shape synthesis, completion,
and reconstruction [13], [14], [15], [16], [17].

The problem of 3D reconstruction from RGB data can
be reduced into 3D shape completion by first estimating

intrinsic images (e.g., depth and surface normal maps) from
RGB data [1]. Some recent papers have studied the problem
of depth and surface normal estimation [18] from a single
image. In particular, the vision component of our model builds
upon MarrNet [19], which jointly estimates intrinsic images
and full 3D shape from a color image and has demonstrated
good performance on standard benchmarks [20].

B. Tactile Sensing for Shape Reconstruction
In robotics, multi-modal learning has been widely exploited

for grasping [21], tracking [22], scene layout probing [23],
and shape recognition with active exploration [24]. There has
been also research on connecting multi-modality data, e.g.,
localizing object contact via visual observation [25], using
vision to learn better tactile representations [26], and learning
the sharing features between vision and tactile [27].

For shape reconstruction in particular, tactile data have
also been exploited for both local [28][29] and global shape
completion [30], [31], sometimes in a bimanual setting [32].
In recent years, researchers started to use active learning for
shape reconstruction from tactile sensing [33], [34], [35], [36].
Luo et al. recently wrote a comprehensive review article on
tactile perception which includes object shape perception [37].

Tactile data have been used to complement visual obser-
vations for shape reconstruction [3], shape reasoning [38],
and grasping [39]. Planning has also found its use in shape
estimation from visual and tactile data [40]. We refer readers
to Bohg et al. [2] for a thorough review. These papers,
however, directly augment visual observations with tactile
signals without leveraging shape priors. In comparison, we
use shape priors learned from large-scale shape repositories
to efficiently integrate tactile and visual observations.

In this paper, we obtain tactile observations with the
GelSight sensor [4]. GelSight, with its contact surface of
a soft elastomer, is able to recover high-fidelity object shape.
This makes it particularly useful in object shape reconstruction
among tactile sensors. GelSight has also found its in wide
applications including physical material modeling [41] and
robot grasping [42].

III. METHOD

We reconstruct the 3D shapes of the objects from both
vision and touch. The pipeline of the system is described in
Figure 2: we first reconstruct a voxelized rough 3D model
of the object from a Kinect color image, and then touch the
areas that visual prediction is not of high confidence. The
tactile data provide us with the precise location and geometry
of the object surface, especially in the occluded areas. These
signals can later be posed as constraints to refine the 3D
shape. The touch is conducted in a closed-loop exploration
process: each time the robot touches the surface location
which has the maximum uncertainty in the shape prediction.
The policy aims to reduce the times of touches, making the
reconstruction more efficient.

A. 3D Reconstruction from Vision and Shape Priors
Our 3D reconstruction model exploits a key intermediate

representation—intrinsic images (a.k.a. 2.5D sketches) [1].
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Fig. 2: An overview of our interactive system that estimates 3D
shape from monocular vision, touch, and shape priors.

The use of intrinsic images brings in two key advantages.
First, it is a unified representation that integrates multi-modal
data (RGB images, depth maps, and tactile signals). Using
intrinsic images allows us to build a principled framework
for multi-model shape reconstruction. Second, color images
and 3D shapes become conditionally independent given
intrinsic images. When depth data are not available, our
formulation decomposes the challenging problem of single-
image 3D reconstruction into two simpler ones: intrinsic
image estimation and 3D shape completion. This provides us
with better reconstruction results from a color image.

Our network, therefore, has two components to recover 3D
shape from a color image. The first is a 2.5D sketch estimator
(Figure 3-I), predicting the object’s depth, surface normals,
and silhouette from the color image; The second is a 3D
shape estimator (Figure 3-II), inferring voxelized 3D object
shape from intrinsic images. When depth data is available,
we can use them to replace the predicted depth for possible
better performance.

1) 2.5D Sketch Estimation: The first component of our
network (Figure 3-I) takes a 2D color image as input
and predicts its 2.5D sketches: depth, surface normals,
and silhouette. The goal of 2.5D sketch estimation is to
distill intrinsic object properties from input images, while
discarding properties that are non-essential for the task of 3D
reconstruction, such as object texture and lighting.

We use an encoder-decoder network for this step. Our
encoder is a ResNet-18 [43], turning a 256×256 RGB
image into 384 feature maps, each of size 16×16. Our
decoder has three branches for depth, surface normals, and
silhouette, respectively. Each branch has four sets of 5×5
transposed convolutional, batch normalization, and ReLU

layers, followed by a 1×1 convolutional layer. It outputs at
the resolution of 256×256.

2) 3D Shape Estimation: The second module (Figure 3-II)
infers 3D object shape from estimated 2.5D sketches. Here,
the network focuses on learning priors of common shapes.
The network architecture is again an encoder and a decoder.
It takes a normal image and a depth image as input (both
masked by the estimated silhouette), maps them to a 200-dim
vector via a modified version of ResNet-18 [43]. We changed
the average pooling layer into an adaptive average pooling
layer, and the output dimension of the last linear layer to 200.
The vector then goes through a decoder, consisting of five
sets of transposed convolutional, batch normalization, and
ReLU layers followed by a transposed convolutional layer
and a sigmoid layer to output a 128×128×128 voxel-based
reconstruction of the shape.

B. Tactile Sensing for Shape Refinement

Tactile sensing obtains precise information in the local area:
the data from the GelSight sensor provide high-resolution
3D geometry of the contact surface, and the position reading
from the robot tells the exact location of the touch surface in
the global space. The tactile data set solid constraints on the
object’s shape, and thus help to refine the 3D shape prediction
from vision.

1) 3D Reconstruction from GelSight: We can reconstruct
the height function z = f(x, y) from the GelSight tactile
image [4]. Under the assumption that the lighting and surface
reflectance are evenly distributed, the light intensity I at
(x, y) can be modeled as

I(x, y) = R

(
∂f

∂x
,
∂f

∂y

)
(1)

where R is the reflectance function which is a nonlinear
function.

We first build a lookup table to obtain the inverse function
R−1, which maps observed intensity to geometry gradients.
A ball with known radius is pressed on the GelSight multiple
times to collect data. Then, the gradient can be computed as(

∂f

∂x
,
∂f

∂y

)
= R−1(I(x, y)) (2)

After calculating the gradients, we reconstruct the height
map z = f(x, y) by integrating the gradients. It can be
represented as the Poisson equations (∇f)2 = g, where

g =
∂f

∂x

(
∂f

∂x

)
+
∂f

∂y

(
∂f

∂y

)
. (3)

We use the fast Poisson solver with the discrete sine trans-
form (DST) to solve it, and get the height-map reconstruction.
Figure 4 shows some examples of the GelSight images and
the reconstructed 3D surfaces when contacting different areas
on the mustard bottle.

2) Registration of World and System Coordinates: We need
to register three coordinate systems: world, robot, and voxel
(vision). To align the world the robot frame, we calibrate
three points in the real world xw1 = (0, 0, 0)T , xw2 =
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Fig. 3: Our model has three major components. It first estimates the object’s 2.5D sketches (depth, surface normals, and silhouette) from a
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Fig. 4: Tactile signals on different parts of the object and the
corresponding 3D reconstructions

(1, 0, 0)T , xw3 = (0, 1, 0)T , record their corresponding robot
coordinates xr1, xr2, xr3, and calculate the transformation
matrix by solving the linear equations

Xr = Rr ·Xw +Tr, (4)

where Xr = [xr1,xr2,xr3], Xw = [xw1,xw2,xw3], Rr is
the rotation matrix, and Tr is the translation vector.

To align voxels with the world frame, we use the correspon-
dence of a fixed point o, axes ax,ay,az, and the scale s to
calculate the transformation. The bottom center of the voxels
ov is aligned with the fixed point on the table in the world
frame ow. The axes can be calculated based on the camera’s
position and orientation. In our setting, ax = (−1, 0, 0)T ,
ay = (0, 1, 0)T , az = (0, 0, 1)T . The scale of each voxel
can be calculated by s = np × lp, where np is the number
of corresponding pixels to each voxel and lp is the length
of each pixel in the real world. Then the rotation matrix
Rv = s ·

[
ax,ay,az

]T
. The transformation between world

and voxel coordinate can be represented as

xw = Rv · (xv − ov) + ow. (5)

After registration, we can map touches into corresponding
voxels and control the robot arm to touch the target regions
in the real world.

3) Updating Shape Reconstruction with Touch: We then
present how we update the model’s prediction with tactile
signals, after converting them into surface normals, and regis-
tering them into the system coordinates. The key observation
here is to design a differentiable loss function that enables
fine-tuning with back-propagation.

Figure 5 illustrates our design. Given a 3D point in space
and its normal vector n, we gradually move the robot arm
toward the destination, unless it touches a solid object halfway
between. Either way, we obtain signals on whether the 3D
voxels along the trajectory are occupied. We use vp to
represent the value at position p in a 3D voxel grid, where
vp ∈ [0, 1]. Assume the GelSight sensor suggests the voxel
p0 = {x0, y0, z0} is filled (Figure 5b). Our differentiable loss
tries to encourage the voxel’s value to be 1, and all voxels in
front of it, along the direction n, to be 0. This ensures the
estimated 3D shape matches the obtained tactile signals. The
differentiable loss for a voxel p is defined as

L(vp) =


v2p, p = p0 + kn, ∀k < 0

(1− vp)2, p = p0

0, otherwise
. (6)

The gradients are

∂L(vp)

∂vp
=


2vp, p = p0 + kn, ∀k < 0

2(vp − 1), p = p0

0, otherwise
. (7)

The loss and gradients can be similarly derived when the
GelSight sensor suggests the voxel p0 is empty (Figure 5a).

After collecting touch signals, we compute losses and back-
propagate gradients to the latent vector from the 2.5D sketch
encoder. We then update it (with a learning rate of 0.001)
and use the shape decoder to get a new shape. We repeat this
process for 10 iterations for each touch.

C. Policy for Active Tactile Exploration

We here describe our policy that automatically discovers
the most uncertain region of the prediction for the next
tactile exploration. Since the value of each voxel vi,j,k is the
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Fig. 6: Our policy on finding the next place to touch. (a) A 2D
search grid overlaid on the voxel grid, where the confidence values
of the voxel prediction are assigned to the search grid. (b) After the
assignment, we compute the integral map and use it to efficiently
search for the region of maximal uncertainty. See text for details.

output of the sigmoid function which indicates the existing
probability, the network’s confidence score of voxel vi,j,k
is defined as ci,j,k = |vi,j,k − 0.5|. We therefore would like
to find a region S that is of the same size as the GelSight
sensor and minimizes

∑
(i,j,k)∈S ci,j,k. sear This seemingly

simple problem is challenging as the region S can be of any
orientation, and we want the optimization to be fast. Our
algorithm is based on integral maps. Given a plane, we sample
a 2D grid on the plane and assign each point’s confidence
score fp,q as its closest voxel’s confidence score, as shown
in Figure 6a. We then compute the integral maps on the 2D
grid; specifically, we have gp,q =

∑p
i=1

∑q
j=1 fi,j . As

gp,q = fp,q + gp−1,q + gp,q−1 − gp−1,q−1, (8)

we can compute the matrix G in O(N2) time, where N is
the length of the voxel grid.

As the size of the GelSight sensor S = k × k is known,
we can then find the region S with a minimal summed
confidence score using G, again in O(N2). This is because
for a particular region [p+1, p+k]× [q+1, q+k], as shown
in Figure 6b, we can compute its regional sum in O(1) as

k∑
i=1

k∑
j=1

fp+i,q+j = gp+k,q+k − gp,q+k − gp+k,q + gp,q. (9)

Finally, we in parallel evaluate multiple planes by searching
over yaws (every 90◦) and pitches (every 10◦).

IV. EXPERIMENTS

We now present experimental results. We first introduce
our robot platform setup and how we generate training
data for the networks. We then discuss our main results—

how we reconstruct high-quality 3D shapes with vision,
touch, and shape priors. Further, we conduct ablation studies
to understand the contributions of each model component:
how shape priors and the active exploration policy help to
reconstruct shapes more efficiently, and how well our system
adapts to RGB and depth data.

A. Robotic System Setup

The robotic system includes a 6-DOF robot arm, a GelSight
tactile sensor, and a Kinect 2 (as shown in Figure 1). The
GelSight sensor is mounted on a WSG 50 parallel gripper
for the convenience. The target object is fixed to an optical
breadboard in the robot’s working space so that it will keep
static during the interaction with the robot.

The robot arm is a UR5 from Universal Robotics with a
reach radius of 850mm. The WSG 50 gripper is a parallel
gripper from Weiss Robotics with force feedback. We do
not use the gripper for gripping the objects, but we use
the gripper’s force feedback to alert collision of the sensor
so that we install the GelSight sensor outwards in order to
better touch the objects. The GelSight sensor we apply is the
version introduced in [44]. It captures the surface geometry of
a contact area of 19mm×14mm with a resolution of 640×480
and a frequency of 30Hz. The raw output from the sensor
is in the format of an image, and we reconstruct the 2.5D
topography of the surface from it. The Kinect 2 captures
RGB-D images of the target area, and is fixed on the side of
the table at a 45.72cm height and a 30◦ tilt angle.

B. Conducting Touch without Collision

When touching the object surface, the robot should care-
fully avoid collision with the object. This is especially the case
in our setup, as the initial 3D reconstruction can be imprecise,
and the robot does not have much effective contact feedback
other than the sensing surface of the GelSight sensor. We make
the robot progressively head toward the target region from
distance in the direction of the surface normal. In each touch
attempt, the approach is conducted by the slow opening of the
parallel gripper, so that the force feedback from the gripper’s
current provides a protection of the collision, especially when
the collision does not happen on the GelSight’s sensing area.
At the same time, we also plan the motion of the robot
when transferring between different touch attempt to avoid
interfering with the object. Our basic strategy is to take a
detour in the high-up area when changing the target positions.
But we also calculate the radial angles between the two target
locations. When the angle is small, it indicates that the two
locations are close, and it is safe for the robot to move directly
to the second location to save time.

C. Dataset

We generate synthetic training data of paired images
and 3D shapes for networks to learn shape priors. We use
Mitsuba [45] to render fourteen object categories (bag, bottle,
bowl, camera, can, cap, computer keyboard, earphone, helmet,
jar, knife, laptop, mug, remote control) in ShapeNet [12]
from 20 random views using three types of backgrounds:
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Fig. 7: Results on 3D shape perception. From a single RGB image, our model recovers a rough 3D shape using shape priors. The
reconstruction often captures the basic geometry, but deviates from the actual shape in various ways. The results improve gradually with
touch signals. For example, for the bell-shaped bottle in the last row, the initial reconstruction is too fat (best seen from the top-down
view). With tactile signals, our model recovers its flat shape. Our system also corrects object pose, as shown in the water bottle case.

1/3 on a clean, white background, 1/3 on high-dynamic-
range backgrounds with illumination channels, and 1/3 on
backgrounds randomly sampled from the SUN database [46].
For each object in each view, we render an RGB image and
its depth, surface normal, and silhouette. We augment our
training data by color and light jittering during training.

We train the 2.5D sketch estimator and the 3D shape
estimator separately on synthetic images. The 2.5D sketch
estimator is trained using the ground truth surface normal,
depth, and silhouette images with an L2 loss. The 3D shape
estimator is trained using ground truth voxels and a binary
cross-entropy loss. We implement our model in PyTorch.
We use the Adam optimizer [47] with β1 = 0.5, β2 =
0.9 and a learning rate of 5 × 10−4 for the 2.5D sketch
estimator, and stochastic gradient descent with a learning
rate of 2× 10−2 and a momentum of 0.9 for the 3D shape
estimator. For visualization, bilateral filters are applied to
remove aliasing [48].

D. Results
We show the main results in Figure 7. From a single RGB

image, our learned model correctly segments the object and
produces a rough 3D shape estimation. We then let the robot
automatically touch the objects and use the tactile signals
to further refine the shape. For the sugar box in row 3, we
use a prior learned on box-like shapes instead of all fourteen
categories. An ablation study is presented in Section IV-E.

Our system works well on a variety of object shapes. Each
example shown in the figure has its distinct shape, and our
model works well on all of them. For example, our model
recovers the fine curvature of the spray bottles. As our model
does not require a depth image as input, it can deal with

transparent objects like the water bottle (though it can still
use Kinect depth when available, as shown in Section IV-F).

E. Shape Priors and the Exploration Policy
We then present three ablation studies to understand how

the learned priors and the active exploration policy contribute
to its final performance. First, we compare our model with two
variants: Direct Edit and Random Policy. The first one does
not use shape priors; instead, it directly uses the tactile signals
to edit the voxelized shape, i.e. changing the values of the
touched voxels to 1 and the voxels in front of them to 0. The
second does not use our policy. It randomly chooses where to
touch within the object’s bounding box. The performance of
the second baseline has large variance due to its randomness.
For quantitative evaluation, we run it 10 times and compute
the mean of its scores.

Figure 9 shows qualitative results. Both the policy and the
shape priors help to obtain an accurate shape estimation much
faster, significantly reducing the number of touches required.
Without the priors, each touch can only be used to update a
local region of the shape; without the policy, the shape may
become significantly worse before eventually getting better.

We further quantitatively compare the shape obtained after
each update with the ground truth shape. Our metric is
the classic Chamfer distance (CD) [49], widely used in the
computer graphics community for measuring shape similarity.
For each point in each cloud, CD finds the nearest point in
the other point set, and sums the distances up.

We show quantitative results in Figure 11. Here, we also
have a human policy, where humans select the position of the
next touch. This can be seen as an upper bound of possible
performance. Our full model achieves a low Chamfer distance
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Fig. 8: Our method can use either our estimated depth maps or Kinect depth maps. A Kinect depth map can be helpful if it is accurate: for
example, the initial reconstruction of the left bottle is flatter using the Kinect depth map. However, if we purely rely on Kinect depth, our
reconstruction would not be as accurate when the Kinect depth is inaccurate (see the transparent water bottle).
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Fig. 9: We show the effects of shape priors and the policy. If we
Direct Edit the voxels’ value (not using learned priors to update),
each touch can only be used to update the shape locally. The shape
does not change much even after many touches. With Random
Policy, it takes longer for the model to obtain fine shape structure.
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Fig. 10: The two priors on the sugar box. A network trained on
general shapes predicts a less accurate shape, which is later corrected
by touches. A network trained on box-like shapes gives better results.

after a few touches, close to the human, while the baselines
(w/o policy or priors) take much longer.

We also evaluate how priors learned on different training
sets affect results. Figure 10 shows that for the sugar box, a
network trained on general shapes predicts a less accurate
shape, which is later corrected by touches; in contrast, a
network trained on box-like shapes gives better results. This
reveals an interesting future direction: it will be helpful to
classify the object’s type from vision, which may inform the
most efficient policy and prior.

F. RGB vs RGB-D Input

We finally evaluate how our model works on RGB vs.
RGB-D data, to better understand its practical applicability.
Figure 8 reveals that our method can use either our estimated
depth maps or Kinect depth maps. A Kinect depth map
can be helpful if it is accurate: for example, the initial
reconstruction of the left bottle is flatter (and therefore better)
using the Kinect depth map. However, Kinect depth maps
can also be unreliable: it fails to estimate the depth of the
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Fig. 11: Shape estimation accuracy with respect to the number of
touches, measured in Chamfer distance. Our policy recovers the
shape accurately and efficiently. With Random Policy, it takes much
longer to reconstruct a reasonable shape; if we Direct Edit the
voxels’ value (not using learned priors to update), the object is
hardly updated after each touch. The Human method asks a human
to manually select where to touch for each step and can be seen as
an upper bound of an automatic algorithm’s performance.
transparent water bottle. If we purely rely on Kinect depth,
our reconstruction would not be as accurate as our current
formulation, which is able to recover 3D shape purely from
a color image and touch.

V. CONCLUSION

We have presented a novel model for 3D shape perception
that integrates visual and tactile signals with learned shape
priors. Our model uses intrinsic images as the intermediate
representation to unify multi-modal signals. We have also
proposed an active exploration policy to search for the most
informative touches. Our model performs well on real objects,
recovering their 3D shape accurately. Ablation studies verify
that the use of touch priors and the exploration policy enables
more efficient shape recovery. Our model works well with
RGB and RGB-D data, and can handle transparent objects.

We hope our approach can inspire future research in fusing
common sense knowledge into building object models: the
idea of learning an object prior can be extended to not only
model shapes, but objects’ physical attributes; we can also
refine the learned object prior through interaction [2].
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